

SERIOUS SERVICE[®] Professional Machinery Health Care (Fan Doctor[®])

Vibration Industrial Balancing & Equipment Services, Corporation 720 - 999 W. Broadway, Vancouver, BC V5Z 1K5 www.vibescorp.ca email: info@vibescorp.ca Phone: 604 - 619 - 9381 (24/7)

INVERSINE AUHF Inverter Sinewave Filter

Tony Hoevenaars, PEng., MIRUS International Inc. April 2019

What we will Discuss

- PWM Adjustable Speed Drive Inverters
- Problems Associated with PWM Inverter Operation
 - Long leads/cables
 - Overvoltage at motor terminals and reflective wave phenomenon
 - Motor Anti-resonance issue
 - Common-mode voltage issues, shaft voltage and bearing currents
- INVERSINE[™] Advanced Universal Sine-Wave Filter
- Competitive Comparison
- Summary

Mirus Is Harmonic Mitigation

MIRUS International Inc. designs and develops world-class power quality improvement products for mission critical operations

Our solutions:

- Minimize disruption to the power supply
- Improve reliability
- Adhere to the strictest regulatory requirements
- Save energy and reduce operating costs

PWM Adjustable Speed Drive Inverters

MIRUS International Inc.

- Utilize Pulse Width Modulation (PWM) Inverters with high frequency switching of Insulated Gate Bipolar Transistors (IGBTs)
 - 2 to 8 kHz switching frequencies typical
 - Voltage rise time (dV/dt) rates of 6,000 V/µs typical (up to 20kV/µs is possible)
- Motors are designed to withstand stress of 1,000V/ µs

Conventional ASD system

ASD Normal Mode Output Voltage: Typical PWM for 600V Inverter at 2 kHz

Voltage rise time ratio (dV/dt) = 4,400 V/µs Peak voltage = 853 V (603V AC supply)

Problems Associated with Inverter Operation

- Motor problems:
 - Motor terminal overvoltage (spikes) due to reflective wave phenomenon and motor anti-resonance
 - Excessive harmonic losses
 - Excessive noise
 - Stressed insulation leading to failures
 - Shaft voltage and Bearing currents leading to bearing failures
- High EMI and RFI
- Higher cost, inverter duty motors required
 NEMA MG-1 Part 31.
- Special cables required to reduce leakage currents, deal with overvoltages, etc...

Reflective Wave Phenomenon with Long Cable Runs

- PWM pulses travel between inverter and motor behaving like traveling waves on transmission lines
- Leads to reflective wave phenomenon and overvoltage at motor terminals
 - Up to 2 x DC bus voltage of the drive
- Caused by high dV/dt of PWM pulse and mismatch between cable and motor surge impedance
- Worse with long cable runs and higher PWM switching frequency

Reflective Wave Phenomenon (cont.)

- MIRUS International Inc.
- IGBT's allow for higher switching frequencies
- Even relatively short cable runs can cause problems:
 - Critical cable length for 500V/µs dV/dt is ~ 100m range (328 ft)
 - 1000 V/µs is 50m (164 ft)
 - 10,000 V/µs is 5m (16 ft)
- Worse with higher surge impedance, small HP(kW) motors

Reference: AB App Note, 'Effective Motor Protection Against Reflected Wave Phenomenon'

Overvoltage and Ringing in a 6-Step ESP Leading to Motor Failure

- MIRUS International Inc.
- 1100 HP ESP system operating in 6-Step mode with voltage distortion > 20% and obvious overvoltages and ringing
- Although there are only six voltage steps during each cycle, each step still has a fairly steep rise time resulting in voltage over shoot and ringing
- Resulted in premature motor failure
- In PWM operation without filtering, this would be more severe because it would occur many more times in the pulsed DC voltage
- But PWM with a sinewave filter is a good option

3-Phase Voltage and Current Waveforms on 6-Step ESP prior to and at Motor Failure

Conventional PWM Inverter Sinewave Filter

- Sinewave filters are low pass designs targeting the lowest PWM harmonic number with highest magnitude
 - These harmonics exist near the inverter switching frequency
 - Typically 2 to 8 kHz for ESPs
- For near sinusoidal voltage, the filter's tuned frequency must be well below the inverter's switching frequency and comfortably above its output fundamental frequency
 - Conventional design uses a minimum cutoff frequency of 10x fundamental and at least, 2 to 2.5x below the switching frequency
 - A 600 Hz cutoff frequency is often used for a 60 Hz inverter with a switching frequency above 2 kHz

Second-order Inverter Sinewave Filter

ESP PWM Output Voltage Waveform with Conventional Sinewave Filter

Conventional PWM Inverter Sinewave Filter (cont.)

- It is important to prevent potential resonance of the filter with cable and motor impedances
 - Resistors are often added to produce a second-order RLC network
 - Resistors increase losses and filter cost so some manufacturers offer designs without resistors that often perform poorly and fail prematurely
 - Often significant levels of high frequency voltage ripple remain

Second-order Inverter Sinewave Filter

ESP PWM Output Voltage Waveform with Conventional Sinewave Filter

Conventional Sinewave Filter Computer Simulations – 200HP, 480V, 60Hz ESP

Sinewave Filter Tuned to 10x Fund (600 Hz) with 2 kHz Switching Frequency

Inverter Output PWM Voltage Waveform and Spectrum Sinewave Filter Output Voltage Waveform and Spectrum Sinewave Filter Output Current Waveform and Spectrum

New Sinewave Filter Computer Simulations – 200HP, 480V, 60Hz ESP

Sinewave Filter Tuned to 3x Fund (180 Hz) with 2 kHz Switching Frequency

Substantial improvement in voltage distortion, voltage drop and power factor

Inverter Output PWM Voltage Waveform and Spectrum Sinewave Filter Output Voltage Waveform and Spectrum

New Sinewave Filter Improves PF and Reduces Inverter Current

- Filter capacitors supply most of the inductive reactive power of motor
- Power Factor is improved to near unity

 $PF = \cos(\emptyset)$ $\emptyset = \cos^{-1}(PF)$

- Voltage drop of the filter choke is kept as low as possible
- The resulting RMS current of the inverter is smaller with the filter than without
- Reduces need to oversize VFD for motor

INVERSINE[™] Advanced Universal Sinewave Filter (AUSF)

- Low pass filter with cutoff frequency well below the lowest harmonic frequency of the inverter voltage resulting from PWM
 - Filters out high frequency currents while allowing lower frequency fundamental currents to pass
 - < 3% voltage harmonic distortion</p>
 - < 5% current harmonic distortion</p>
 - Without the need for damping resistors

Prevents

- Transient overvoltages at motor terminals
- Additional motor losses
- Excessive motor noise

INVERSINE AUSF Applications

- Motor which has inadequate insulation for ASD duty
- Motor cable length is long, especially ESPs for Oil & Gas and Irrigation
- Number of parallel motors
- Specific requirements for peak voltage level and dV/dt rise time ratio
- To reduce motor noise
- Inverter duty cables not used
- Maximum safety and reliability (ie. Explosion Proof applications)

INVERSINE AUSF Performance (Voltage)

INVERSINE AUSF Performance (Current)

INVERSINE and the Inverter Power

INVERSINE

- Low insertion loss resulting in lower voltage drop
 - < 2.5% of rated voltage</p>
- No damping resistors required
- Highest efficiency > 99%
- VTHD improved to < 3%

OTHERS

- Standard LC filter insertion loss is 10% of rated voltage
- Damping resistors often required to limit resonance
- Often lower than 98% efficiency
- VTHD < 5% but not always reached
- Improves PF at VFD output
- PF at VFD remains low

- Motor neutral voltage on a balanced 60Hz or 50Hz utility sine-wave system is zero
- But motor neutral on ASD due to rectangular PWM pulses at high frequency is never zero
 - Although sum of average 3-ph voltages is zero, an instantaneous sum of 3-ph voltages is not zero resulting in neutral point shift voltage (Common-Mode Voltage)
- Common-Mode voltage induces shaft voltage and generates bearing currents in motor
- Common-mode currents cause motor bearing failures and other motor issues

Measured ASD Neutral-Ground Voltage

JS

International Inc.

Parasitic Line-Gnd Common-Mode Path in a Solidly Grounded ASD System

AC Drive Input Transformer Motor Frame R U (+) Χo S Vdc Tach Motor bus W (-) lg-m PE Logic la ÷⊂_lg-c 'lg Common Mode PE Vna Current Path ~~~~ ~~~ \sim Potential #1 Potential #2 Potential #3 EARTH GROUND Interface Electronics 0-10V, communication, 4-20 ma, sensor interface, etc Potential # 4 True Earth Ground (TE)

EMI EMISSIONS of MODERN PWM AC DRIVES

Gary L. Skibinski, Russel J. Kerkman, and Dave Schlegel IEEE Industry Applications Magazine, November/December 1999, pp. 47-81.

INVERSINE AUSF with CM Choke

- Standard INVERSINE differential mode filtering
 - < 3% VTHD
- Built-in common-mode choke
 - >25 dB attenuation in switching frequency range (2 - 8kHz)
 - > 40dB in 100kHz to 1MHz frequency range
 - Reduce common-mode voltages throughout power system
 - Reduce shaft voltage and bearing currents
 - Reduces cable leakage current
 - Reduces EMI/RFI

Common-Mode Testing – 7.5 HP VFD

- Common-mode current without sinewave filter or common-mode choke
 - 15 kHz = 2.690A
 - 2 kHz = 1.112A

- Common-mode current with sinewave filter
 - 15 kHz = 1.733A
 - 2 kHz = 0.756A

(up to 1.5x reduction)

Common-Mode Testing – 7.5 HP VFD

- Common-mode current with only common-mode choke
 - 15 kHz = 0.353A
 - 2 kHz = 0.238A (up to 7.5x reduction)
- Common-mode current with sinewave filter and common-mode choke
 - 15 kHz = 0.229A
 - 2 kHz = 0.202A

(up to 10x reduction)

PowerGraph: CMOHK_2gnd_39tz						
15 1-11-7						
15 KHZ			huse			t and has taken a s
a de la casa		selled in the second second		Second and a state of the second state of the	and he was the second second strategy and the second second second second second second second second second s	
- Wellin	· altre ·				111	
2 1/17						
ZKIIZ	بريلية بعراقه رقار فاريه	مرجعة بالمراقي فيراهي		و بر و و ورورو و		المراجع والمراجع والمراجع والمراجع والمراجع
uddingen han hundingen d	والانداجا فاصرفهم فمداهدهم	Autoritation and a second s	Andrewskink	and a second	and here have been been able and and	فيستبيه يستشبيه والمستليف بتليف والمتحمين وستطيب تحسيان

200HP, 480V Inversine Sinewave filter replaced an existing filter on an electrical submersible pump (ESP) A typical ESP installation

Challenge:

 Capacitors on existing filter were failing frequently and performance was poor

Results:

"The lowest output voltage distortion measured prior to this was 10.1%"

VFD Output Voltage

VFD Output Current

1100HP, 480V Inversine Sinewave filter replaced an existing filter on an electrical submersible pump (ESP)

Challenge:

Motors failing in 6-Step Operation

Results:

- Total elimination of overvoltages and ringing
- < 3% voltage drop (other filters > 10%)

Voltage to Motor in 6-Step Mode

Voltage to Motor in PWM with Filter

Results (cont.):

Motor Temperature Reduction with 1100HP, 480V Inversine Sinewave Filter: 12° F at 50Hz Operation

Results (cont.):

Drop in Motor Operating Temperature with 1100HP, 480V Inversine Sinewave Filter: 39° F at Motor Startup

Results (cont.):

At a second site where a similar 1100HP, 480V Inversine Sinewave Filter was installed

Results (cont.):

Voltage Waveform comparison of Mirus Inversine vs two other competitive sinewave filters in similar ESP applications

Results (cont.):

Voltage Spectrum comparison of Mirus Inversine vs two other competitive sinewave filters in similar ESP applications

Summary

- The use of PWM Drives can lead to motor problems, cable issues and high EMI/RFI
- Mirus INVERSINE Advanced Universal Sine-Wave Filter will eliminate or reduce these problems by:
 - Substantially reducing voltage rise time (dV/dt)
 - Converting output voltage to near sinewave (<3% VTHD)
 - Lowering harmonic losses and temperature in motor
 - Reducing motor and cable insulation stress
 - Reducing motor noise
- Available common-mode blocking option will:
 - Reduce shaft voltage and bearing currents
 - Reduce cable leakage currents
 - Reduce common-mode voltages throughout power system

Discussion

Questions and feedback

Contact: Garrett Sandwell

info@vibescorp.ca

also check a related article titled "Learn About Shaft Currents"

Thank You

Vibration Industrial Balancing & Equipment Services, Corporation

720 - 999 W. Broadway, Vancouver, BC V5Z 1K5 www.vibescorp.ca email: info@vibescorp.ca Phone: 604 - 619 - 9381 (24/7)

